Curve counting invariants around the conifold point
نویسندگان
چکیده
منابع مشابه
Curve counting invariants for crepant resolutions
We construct curve counting invariants for a Calabi-Yau threefold Y equipped with a dominant birational morphism π : Y → X. Our invariants generalize the stable pair invariants of Pandharipande and Thomas which occur for the case when π : Y → Y is the identity. Our main result is a PT/DT-type formula relating the partition function of our invariants to the Donaldson-Thomas partition function in...
متن کاملMemory efficient hyperelliptic curve point counting
Let E be a hyperelliptic curve of genus g over a finite field of degree n and small characteristic. Using deformation theory we present an algorithm that computes the zeta function of E in time essentially cubic in n and quadratic memory. This improves substantially upon Kedlaya’s result which has the same time asymptotic, but requires cubic memory size. AMS (MOS) Subject Classification Codes: ...
متن کاملElliptic and Hyperelliptic Curve Point Counting through Deformation
Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microlm, elektronisch of op welke andere wijze ook zonder voorafgaandelijke schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microlm, electronic or any other means...
متن کاملFast Elliptic Curve Point Counting Using Gaussian Normal Basis
In this paper we present an improved algorithm for counting points on elliptic curves over finite fields. It is mainly based on SatohSkjernaa-Taguchi algorithm [SST01], and uses a Gaussian Normal Basis (GNB) of small type t ≤ 4. In practice, about 42% (36% for prime N) of fields in cryptographic context (i.e., for p = 2 and 160 < N < 600) have such bases. They can be lifted from FpN to ZpN in a...
متن کاملA Quasi Quadratic Time Algorithm for Hyperelliptic Curve Point Counting
We describe an algorithm to compute the cardinality of Jacobians of ordinary hyperelliptic curves of small genus over finite fields F2n with cost O(n ). This algorithm is derived from ideas due to Mestre. More precisely, we state the mathematical background behind Mestre’s algorithm and develop from it a variant with quasiquadratic time complexity. Among others, we present an algorithm to find ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2011
ISSN: 0022-040X
DOI: 10.4310/jdg/1324476754